SEARCH
You are in browse mode. You must login to use MEMORY

   Log in to start

TRX/RX-TAREA SEMANA 1


🇪🇸
In Spanish
Created:


Public


5 / 5  (1 ratings)



» To start learning, click login

1 / 25

[Front]


NA
[Back]


NA

Practice Known Questions

Stay up to date with your due questions

Complete 5 questions to enable practice

Exams

Exam: Test your skills

Test your skills in exam mode

Learn New Questions

Dynamic Modes

SmartIntelligent mix of all modes
CustomUse settings to weight dynamic modes

Manual Mode [BETA]

Select your own question and answer types
Specific modes

Learn with flashcards
Complete the sentence
Listening & SpellingSpelling: Type what you hear
multiple choiceMultiple choice mode
SpeakingAnswer with voice
Speaking & ListeningPractice pronunciation
TypingTyping only mode

TRX/RX-TAREA SEMANA 1 - Leaderboard

0 users have completed this course. Be the first!

No users have played this course yet, be the first


TRX/RX-TAREA SEMANA 1 - Details

Levels:

Questions:

58 questions
🇪🇸🇪🇸
NA
NA
1. Las pérdidas por difracción debidas a un obstáculo que obstruye la línea de visión directa de un enlace: a) Aumentan al aumentar la frecuencia. b) Disminuyen al aumentar la frecuencia. c) No varían con la frecuencia. d) Son infinitas.
Respuesta: a) Aumentan al aumentar la frecuencia Justificación: La difracción permite comunicar dos puntos sin que exista visibilidad directa entre ellos; sinembargo, al aumentar la frecuencia este efecto tiene menos relevancia y para frecuencias de labanda de UHF y superiores la presencia de un obstáculo (montañas, edificios, etc.) queobstruya la trayectoria entre las antenas puede limitar gravemente las posibilidades decomunicación. Por tanto, en función de la banda de frecuencias ciertos efectos seránpredominantes mientras que otros serán despreciable.
2. ¿Qué afirmación es cierta respecto a la onda de superficie? a) Presenta variaciones entre el día y la noche. b) Permite la propagación más allá del horizonte en las bandas de MF, HF y VHF. c) La polarización horizontal se atenúa mucho más que la vertical. d) El campo lejos de la antena es proporcional a la inversa de la distancia.
Respuesta: c) La polarización horizontal se atenúa mucho más que la vertical. Justificación: Si las antenas se aproximan al suelo, la potencia recibida en ambas polarizaciones decrece hasta una cierta altura en que la potencia recibida en polarización vertical permanece constante, mientras que en polarización horizontal continúa decreciendo.
3. La atenuación por absorción atmosférica: a) Es constante con la frecuencia. b) Siempre es creciente con la frecuencia. c) Presenta picos de absorción a 22 y 60 GHz. d) Presenta picos de absorción a 15 y 40 GHz.
Respuesta: c) Presenta picos de absorción a 22 y 60 GHz. Justificación: A frecuencias superiores presenta un comportamiento creciente con la frecuencia y la aparición de rayas de atenuación asociadas a las frecuencias de resonancia de las moléculas. A 22,3 GHz y 60 GHz aparecen las primeras rayas asociadas al vapor de agua y al oxígeno respectivamente
4. ¿Cuál es el fenómeno meteorológico que produce una mayor atenuación en la señal en la banda de SHF? a) granizo b) nieve c) niebla d) lluvia
Respuesta: d) lluvia Justificación: La atenuación por lluvia depende de la intensidad y de factores tales como el tipo de lluvia, el tamaño y la velocidad de las gotas de agua.
5. ¿Cuál de las siguientes afirmaciones es falsa? a) La capa D sólo existe de noche y refleja HF. b) capa E refleja de noche MF. c) La capa F1 sólo existe de día y refleja HF. d) La capa F2 refleja de noche HF.
Respuesta: a) La capa D sólo existe de noche y refleja HF. Justificación: La capa inferior D se extiende entre los 50 y 90 km de altura. De hecho, por la noche prácticamente desaparece, por lo que habitualmente se considera que la capa D es una capa diurna
6. El ángulo de incidencia mínimo de una señal de HF en la ionosfera, para que se refleje: a) Disminuye si la frecuencia de la señal aumenta. b) Aumenta si la frecuencia de la señal aumenta. c) Es independiente de la frecuencia. d) Las señales de HF siempre se reflejan en la ionosfera.
Respuesta: b) Aumenta si la frecuencia de la señal aumenta. Justificación: La distancia cubierta en un enlace ionosférico depende del ángulo de incidencia y de la altura virtual a la que se produce la reflexión
7. Para una determinada concentración de iones en la ionosfera y a una altura dada, la distancia mínima de cobertura por reflexión ionosférica (zona de silencio) a) Aumenta con la frecuencia. b) Disminuye con la frecuencia. c) No depende de la frecuencia. d) Depende de la potencia radiada.
Respuesta: a) Aumenta con la frecuencia. Justificación: Para establecer una comunicación ionosférica es necesario conocer la frecuencia de resonancia y la altura virtual a la que se produce la reflexión por mecanismos de difracción, es posible obtener alcances en estas frecuencias de algunas decenas de km.
8. Una emisora de radiodifusión que emite a una frecuencia de 1 MHz es captada por la noche hasta distancias de 1.000 km. ¿Cuál es el fenómeno de propagación? a) Onda de superficie. b) Reflexión ionosférica en capa E. c) Reflexión ionosférica en capa F. d) Difusión troposférica.
Respuesta: b) Reflexión ionosférica en capa E. Justificación: La capa E es la zona intermedia comprendida entre los 90 y 130 km de altura. Su comportamiento está muy ligado a los ciclos solares. A pesar de presentar grandes variaciones de ionización conserva un nivel apreciable durante la noche.
9. Cuando una onda de frecuencia inferior a 3 MHz se emite hacia la ionosfera, ¿qué fenómeno no se produce nunca? a) Rotación de la polarización. b) Atenuación. c) Absorción. d) Transmisión hacia el espacio exterior.
Respuesta: d) Transmisión hacia el espacio exterior. Justificación: La condición para que la onda regrese a la tierra es que para cierta altura se cumpla, según la ley de Snell. El valor del ángulo de elevación máximo está limitado, para una frecuencia dada de forma que si se supera este ángulo la onda no regresa a la tierra.
10. Los radioaficionados utilizan en sus comunicaciones satélites en la banda de VHF. ¿Qué polarización utilizaría para optimizar la señal recibida? a) Lineal vertical. b) Lineal horizontal. c) Circular. d) Indistintamente cualquiera de las anteriores.
Respuesta: c) Circular. Justificación: En las bandas de VHF y UHF puede tener valores considerables que son impredecibles. Es por este motivo que en estas bandas es necesario el empleo de polarización circular en las comunicaciones tierra - satélite.
11. Para una comunicación a 100 MHz entre dos puntos sin visibilidad directa, separados 100 km y situados sobre una Tierra supuestamente esférica y conductora perfecta, las pérdidas por difracción entre los dos puntos: a) Disminuyen al disminuir el radio equivalente de la tierra. b) Disminuyen al aumentar la separación entre los puntos. c) Aumentan al aumentar la altura de las antenas sobre el suelo. d) Aumentan al aumentar la frecuencia.Respuesta: d) Aumentan al aumentar la frecuencia. Justificación: La difusión troposférica es importante en las bandas de VHF y UHF en las que el tamaño de las heterogeneidades es comparable a la longitud de onda, y la atenuación atmosférica es despreciable. Permite alcances de centenares de kilómetros y, sin embargo, está sujeta a desvanecimientos debido a variaciones locales rápidas de las condiciones atmosféricas. Este último inconveniente puede superarse aumentando la potencia de transmisión.
14. En 1901 Marconi realizó la primera transmisión radioeléctrica transoceánica utilizando una frecuencia de: a) 0,8 MHz b) 40 MHz c) 80 MHz d) 400 MHz
Respuesta: a) 0,8 MHz Justificación: El 12 de diciembre de 1901, Marconi consiguió realizar de forma satisfactoria la primera comunicación radiotelegráfica transatlántica cubriendo una distancia de 3.000 km entre Gales y Terranova, en el extremo oriental de Canadá.
15. ¿Qué frecuencia y polarización se utilizarían en una comunicación Tierra-satélite? a) MF, circular. b) SHF, lineal. c) VHF, lineal. d) UHF, lineal.
Respuesta: b) SHF, lineal Justificación: A frecuencias superiores, puede emplearse polarización lineal sin que exista una rotación apreciable en la polarización.
16. ¿Qué fenómeno permite establecer comunicaciones transoceánicas en C.B. (banda ciudadana: 27 MHz)? a) Difusión troposférica. b) Refracción en la ionosfera. c) Conductos atmosféricos. d) Reflexión en la luna.
Respuesta: b) Refracción en la ionosfera. Justificación: Cuando la variación de n con la altura es significativa, el radio de curvatura no es muy grande y la trayectoria de las ondas no es recta sino que se curva debido a la refracción.
17. Una señal de OM es captada a 30 km de la emisora. El mecanismo responsable de la propagación es: a) Reflexión ionosférica. b) Refracción troposférica. c) Onda de espacio. d) Onda de superficie.
Respuesta: d) Onda de superficie. Justificación: La onda de superficie es el mecanismo responsable de la propagación a grandes distancias en la banda de MF, donde se encuentra ubicado el servicio de radiodifusión en OM.
18. ¿Cuál de las siguientes afirmaciones sobre la fuente importante de ruido en cada banda es incorrecta? a) Ruido atmosférico en 1-10 MHz. b) Ruido industrial en 10-200 MHz. c) Ruido cósmico en 100 MHz-1GHz. d) Absorción molecular de gases atmosféricos en 1-10 GHz.
Respuesta: d) Absorción molecular de gases atmosféricos en 1-10 GHz Justificación: La atenuación por absorción molecular se debe principalmente a las moléculas de oxígeno y vapor de agua. Para frecuencias inferiores a 10 GHz es prácticamente despreciable, mientras que a frecuencias superiores presenta un comportamiento creciente con la frecuencia.
19. Se desea establecer un enlace a 100 MHz con polarización horizontal entre dos puntos separados 1 km. Suponiendo la aproximación de tierra plana y conductora perfecta, ¿a qué altura colocaría las antenas sobre el suelo para obtener una interferencia constructiva entre la onda directa y la onda reflejada? a) 27 m b) 39 m c) 55 m d) 65 m
Respuesta: a) 27 m Justificación: La presencia de obstáculos y la propia esfericidad de la tierra limitan la visibilidad entre antena transmisora y receptora. Al incidir una onda electromagnética sobre un obstáculo se produce un fenómeno de difracción por el cual el obstáculo irradia parte de la energía interceptada. Una situación de reflexión en tierra plana es la representada en la figura 2.4, en que dos antenas con directividades D1 y D2 que se suponen orientadas en la dirección de su máximo de radiación, están separadas una distancia R y a unas alturas h1 y h2 del suelo, que posee un coeficiente de reflexión.
20. Entre una antena transmisora y una receptora, separadas 10 m, se interpone un semiplano equidistante de ambas; su borde está situado a una distancia de 10 cm de la línea de unión entre las dos antenas, obstruyendo la visibilidad. ¿Para qué frecuencia disminuirá más la señal con respecto a la que se recibiría en ausencia del plano? a) 8 GHz b) 4 GHz c) 2 GHz d) 1 GHz
Respuesta: a) 8 GHz. Justificación: Para dos antenas separadas una distancia r, conectadas a sus correspondientes transmisor y receptor, como se indica en el ejercicio se establece la relación entre la potencia recibida y la radiada y disminuirá a 8Ghz según los cálculos establecidos.
21) La máxima frecuencia utilizable (MUF): a) depende de la hora del día b) depende de la estación del año c) no depende de la potencia transmitida d) Todas las anteriores son correctas
Respuesta: d) Todas las anteriores son correctas Justificación: La frecuencia de resonancia resonancia es la frecuencia a la que se produce reflexión cuando se incide normalmente a la ionosfera.
23) Un ionograma es la representación de: a) la altura virtual en función de la frecuencia; b) la densidad electrónica en función de la altura; c) la frecuencia de plasma en función de la altura; d) ninguna de las anteriores.
Respuesta: a) la altura virtual en función de la frecuencia Justificación: Los ionogramas suelen contener una representación doble, es decir, una serie de líneas horizontales que representan la altura virtual en la que se produciría la reflexión en función de la frecuencia de trabajo.
24) Una onda electromagnética que incide verticalmente en una capa ionosférica la atraviesa: a) siempre; b) si la frecuencia de la onda es mayor que la máxima frecuencia de plasma de la capa; c) si la frecuencia de la onda es menor que la mínima frecuencia de plasma de la capa; d) nunca.
Respuesta: b) si la frecuencia de la onda es mayor que la máxima frecuencia de plasma de la capa. Justificación: Si la frecuencia es superior a fp, la constante de fase es real. En este último caso la permitividad relativa es inferior a la unidad y por tanto la velocidad de fase es superior a la de la luz.
25) ¿Cuál de las características siguientes NO es una desventaja de las comunicaciones ionosféricas? a) Ancho de banda reducido. b) Presencia de ruido e interferencias. c) Distancias cortas. d) Propagación multicamino.
Respuesta: c) Distancias cortas. Justificación: Los efectos de la propagación multi-camino, mejora la relación señal a ruido y por tanto aumenta la cobertura de la célula.
26) La capa ionosférica D: a) refleja las frecuencias bajas; b) está situada entre 90 y 130 km de altura; c) permite la comunicación a frecuencias entre 30 y 100 MHz; d) tan solo existe de noche.
Respuesta: a) refleja las frecuencias bajas. Justificación: Refleja frecuencias bajas y atenúa, por absorción parcial, las frecuencias medias y altas.
27) La propagación ionosférica: a) es el mecanismo típico de propagación a frecuencias de microondas; b) consiste principalmente en reflexiones en la capa D de la ionosfera; c) consigue generalmente mayores alcances de noche que de día; d) ninguna de las anteriores.
Respuesta: a) es el mecanismo típico de propagación a frecuencias de microondas. Justificación: Divide las bandas HF en dos tipos: Llamamos bandas nocturnas a las bandas que sufren una fuerte atenuación por absorción en la capa D. Al caer la noche, la capa D desaparece y la propagación en las bandas nocturnas aumenta considerablemente.
28) Durante la noche, la ionosfera está formada por las capas: a) E y F; b) E, F1 y F2; c) D, E y F; d) D, E, F1 y F2.
Respuesta: a) E y F Justificación: Capa E propagación nocturnas a distancias superiores a los 1600 Km. Capa F1 y F2. De noche la capa F1 se une con la F2 a una altura de 300 Km
29) ¿Cuál de las afirmaciones siguientes relativas a las capas de la ionosfera es cierta? a) La densidad electrónica de las capas D y E varía muy rápidamente con la altura. b) La capa D atenúa las frecuencias bajas y refleja las frecuencias altas. c) La capa E está situada a una altura de 500 km. d) De día las capas F1 y F2 se fusionan en una única capa F
Respuesta: a) La densidad electrónica de las capas D y E varía muy rápidamente con la altura. Justificación: El máximo de densidad electrónica se produce a la altura en el que los dos procesos (producción y difusión) son igualmente importantes.
31) En un radioenlace operando a 38 GHz, las pérdidas más importantes serán debidas a: a) Reflexiones; b) absorción atmosférica; c) vegetación; d) desapuntamiento de las antenas.
Respuesta: c) vegetación Justificación: Entre otros factores a la perdida de energía provocada por la viscosidad del aire y el calor generado por el roce de las partículas del aire.
32) La atenuación por gases atmosféricos: a) es importante para frecuencias de ondas milimétricas; b) presenta un máximo para una frecuencia de 60 GHz; c) depende de la densidad del vapor de agua; d) todas las anteriores son ciertas.
Respuesta: c) depende de la densidad del vapor de agua Justificación: En frecuencias de hasta 1000 GHz debida al aire seco y al vapor de agua puede evaluarse con gran exactitud para cualquier valor de presión, temperatura y humedad
33) Las pérdidas provocadas por la lluvia en un radioenlace: a) son importantes para frecuencias de aproximadamente 1 GHz; b) son mayores con polarización vertical que con horizontal; c) presentan máximos para las frecuencias de resonancia de las moléculas de agua; d) son un fenómeno estadístico
Respuesta: d) son un fenómeno estadístico Justificación: En los radioenlaces troposféricos y por satélite se producen atenuaciones de la señal debidas a la absorción y dispersión causadas por hidrometeoros como la lluvia, la nieve, el granizo o la niebla.
34) La propagación por onda de superficie: a) es un mecanismo típico a frecuencias de UHF; b) se realiza generalmente con polarización horizontal; c) utiliza generalmente como antena transmisora un monopolo; d) sólo se utiliza para distancias cortas como consecuencia de los obstáculos del terreno.
Respuesta: c) utiliza generalmente como antena transmisora un monopolo; Justificación: La onda de superficie es el modo de propagación dominante en frecuencias bajas, entre 10 KHz y 10 MHz, para alturas de antenas pequeñas, aunque habrá de ser tenida en cuenta hasta frecuencias de 150 Mhz para alturas de antenas pequeñas y polarización vertical.
15) Si en un radioenlace no existe visión directa entre la antena transmisora y receptora, entonces: a) la señal recibida será menor que en el caso de espacio libre; b) se debe elevar la antena transmisora hasta que exista visión; c) se debe elevar la antena receptora hasta que exista visión; d) no existe comunicación posible.
Respuesta: a) la señal recibida será menor que en el caso de espacio libre. Justificación: En función de la fase de cada una de las contribuciones la suma de todas ellas puede ser constructiva o destructiva. En el caso de ser destructiva se producirá un fuerte desvanecimiento en la señal recibida.
17) La relación entre los radios de la segunda y la primera zona de Fresnel en un punto determinado de un radioenlace es: a) R2/R1= 4 b) R2/R1= 2 c) R2/R1= √2 d) Ninguna de las anteriores
Respuesta: c) R2/R1= √2 Justificación: Las zonas de Fresnel son elipsoides de revolución cuyo eje mayor tiene una longitud de R+nl/2. La intersección de las zonas de Fresnel con el plano P son circunferencias cuyo radio puede calcularse para el caso que sea mucho menor que d1 y d2.
Problema 18
Respuesta: 1050 m
Problema 19
Respuesta: 5MHz
Problema 20
Respuesta:
1) Un radioenlace transhorizonte de 2000 km que ionosférica puede utilizar la banda de frecuencias: utiliza propagación a) 1 – 50 MHz. b) 100 – 500 MHz. c) 500 – 1000 MHz. d) 1 – 5 GHz.
Respuesta: Respuesta. a)1 – 50 MHz. Justificación: Las radiofrecuencias por encima de 30 MHz tienden a penetrar en la ionosfera, lo que las hace inadecuadas para la propagación a larga distancia. Por lo tanto, el rango de frecuencias de 30 a 300 MHz (también 300 MHz y superiores), que se ubican en la categoría de muy alta frecuencia (VHF), se utilizan principalmente para la comunicación con línea de visión.
2) En un radioenlace punto a punto a 500 MHz donde se requiere una directividad de 25 dB, se debe elegir una antena: a) Yagi. b) Bocina. c) Ranura. d) Reflector parabólico..
Respuesta: d) Reflector parabólico. Justificación: La antena reflectora parabólica, que a menudo se denomina antena parabólica, proporciona una solución de antena aplicable para VHF y superior donde se necesitan una alta ganancia y directividad.
3) El coeficiente de reflexión del terreno: a) depende de la frecuencia y de la intensidad de campo; b) depende de la frecuencia y del ángulo de incidencia; c) tiene generalmente un módulo mayor que la unidad; d) ninguna de las anteriores..
Respuesta: d) Ninguna de las anteriores El coeficiente de reflexión del suelo viene dado por: Γ= sinΘ+Z sinΘ−Z ​ Aquí, 'Θ' es el ángulo de incidencia (entre el suelo y el rayo reflejado) y 'Z' indica si la señal está polarizada horizontal o verticalmente. 'Z' depende de la permitividad relativa del suelo donde tiene lugar la reflexión y no depende de la frecuencia de la señal. Entonces, este coeficiente depende solo del ángulo y la permitividad relativa de la superficie.
4) El fenómeno de reflexión difusa se produce generalmente: a) en el caso de tierra plana; b) para frecuencias elevadas; c) para frecuencias bajas; d) ninguna de las anteriores..
Respuesta: d) ninguna de las anteriores. Justificación: La reflexión difusa es la reflexión de luz u otras ondas o partículas de una superficie de manera que un rayo que incide en la superficie se dispersa en muchos ángulos en lugar de en un solo ángulo como en el caso de la reflexión especular. Se dice que una superficie reflectante difusa ideal exhibe una reflexión lambertiana, lo que significa que hay una luminancia igual cuando se ve desde todas las direcciones que se encuentran en el medio espacio adyacente a la superficie. La frecuencia de la luz permanece sin cambios en ambos medios, pero las longitudes de onda cambian.
9) Si el índice de refracción de la atmósfera crece con la altura, entonces durante la propagación de una onda el haz: a) se aleja de la superficie terrestre; b) se acerca a la superficie terrestre; c) transcurre paralelo a la superficie terrestre; d) ninguna de las anteriores..
Respuesta: c) transcurre paralelo a la superficie terrestre Justificación: Lo más importante a tener en cuenta es que la refractividad es inversamente proporcional a la temperatura y directamente proporcional a la presión y la humedad. Por lo tanto, a medida que nos adentramos en la atmósfera, la refractividad tiende a disminuir, la presión es menor y el aire es más seco. La temperatura también juega un papel y, en realidad, los gradientes de temperatura pueden hacer que el perfil de refracción no sea monótono. La refractividad de la atmósfera disminuye a medida que se asciende en la atmósfera. Esto conduce a una trayectoria de propagación curva para los rayos que inciden en la atmósfera en ángulo. Para ver cómo ocurre la flexión en una curva, podemos comenzar por tratar la atmósfera como un medio estratificado, representado por muchas capas planas pequeñas, cada una de las cuales contiene un índice de refracción diferente que cambia con la altitud.
11) Si el haz se propaga de forma rectilínea, entonces la constante de tierra ficticia vale: a) k = 0. b) k = 1. c) k = 4/3. d) k = ∞
Respuesta: b) k = 1. Justificación: Un haz que se propaga rectilíneamente tiene una constante de tierra ficticia de 1
12) ¿Cuál de las afirmaciones siguientes relativas al fenómeno de difracción en obstáculo de “filo de cuchillo” es cierta? a) Es posible recibir el doble de campo que respecto al caso de espacio libre. b) El coeficiente de reflexión en el extremo del obstáculo es -0,3. c) Las pérdidas que se producen son independientes de la frecuencia. d) Ninguna de las anteriores.
Respuesta: c) Las pérdidas que se producen son independientes de la frecuencia. Justificación: Se define como la curvatura de las ondas alrededor de las esquinas de un obstáculo oa través de una abertura en la región de sombra geométrica del obstáculo / abertura.
Problema 1
Repuesta
Problema 2
Respuesta