SEARCH
You are in browse mode. You must login to use MEMORY

   Log in to start

level: Tarea 3

Questions and Answers List

level questions: Tarea 3

QuestionAnswer
1) Un radioenlace transhorizonte de 2000 km que ionosférica puede utilizar la banda de frecuencias: utiliza propagación a) 1 – 50 MHz. b) 100 – 500 MHz. c) 500 – 1000 MHz. d) 1 – 5 GHz.a) 1 – 50 MHz. En los enlaces de unos 2000a 4000km de longitud, la capacidad de transmisión puede ser algo mayor. El ruido de intermodulación debido a la propagación por trayectos múltiples puede ser un factor importante; las frecuencias situadas alrededor de1a50 GHz
2) En un radioenlace punto a punto a 500 MHz donde se requiere una directividad de 25 dB, se debe elegir una antena: a) Yagi. b) Bocina. c) Ranura. d) Reflector parabólico..d) Reflector parabólico..
3) El coeficiente de reflexión del terreno: a) depende de la frecuencia y de la intensidad de campo; b) depende de la frecuencia y del ángulo de incidencia; c) tiene generalmente un módulo mayor que la unidad; d) ninguna de las anteriores..b) depende de la frecuencia y del ángulo de incidencia; El coeficiente de reflexión del terreno es utilizado cuando se consideran medios con discontinuidades en propagación de ondas. Un coeficiente de reflexión describe la frecuencia de una onda reflejada respecto a la onda incidente
4) El fenómeno de reflexión difusa se produce generalmente: a) en el caso de tierra plana; b) para frecuencias elevadas; c) para frecuencias bajas; d) ninguna de las anteriores..b) para frecuencias elevadas;
5) ¿Cuál de las afirmaciones siguientes relativas a la reflexión en terreno moderadamente seco es correcta? a) El coeficiente de reflexión vale -1 para incidencia rasante. b) La reflexión tiene una mayor intensidad para frecuencias bajas. c) Con polarización vertical, existe un determinado ángulo de incidencia para el que no hay prácticamente onda reflejada. d) Todas las anteriores son correctas..b) La reflexión tiene una mayor intensidad para frecuencias bajas.
6) Considerando reflexión en tierra plana, la diferencia de caminos entre el rayo directo y el reflejado es independiente: a) del coeficiente de reflexión del terreno; b) de la altura del transmisor; c) de la distancia entre transmisor y receptor; d) de la frecuencia..d) de la frecuencia.. La tierra es un medio dieléctrico con pérdidas cuyas constantes dieléctricas varían en función del tipo desuelo, el grado de humedad del mismo y la frecuencia.
7) El índice de refracción de la atmósfera: a) siempre crece con la altura; b) siempre decrece con la altura; c) se mantiene constante con la altura; d) es aproximadamente igual a 1..d) es aproximadamente igual a 1.. El índice de refracción de la parte superior de la atmósfera es n=1, el índice de refracción en la superficie de la tierra dependerán de la densidad y la temperatura del aire
8) En condiciones normales, el índice de refracción de la atmósfera: a) vale 2/3; b) crece con la altura; c) decrece con la altura; d) se mantiene constante con la altura..c) decrece con la altura; El índice de refracción disminuye con la altura, hasta que un límite a partir de la cual, consideraremos que los efectos ópticos de los gases enrarecidos son despreciables
9) Si el índice de refracción de la atmósfera crece con la altura, entonces durante la propagación de una onda el haz: a) se aleja de la superficie terrestre; b) se acerca a la superficie terrestre; c) transcurre paralelo a la superficie terrestre; d) ninguna de las anteriores..a) se aleja de la superficie terrestre; Debido a la refracción en la atmósfera de los rayos de luz procedentes de los cuerpos celestes, su posición real no coincide con su posición aparente, la diferencia se denomina ángulo de refracción
10) Si la curvatura del haz es igual que la de la superficie terrestre, entonces la constante de tierra ficticia vale: a) k = 0. b) k = 1. c) k = 4/3. d) k = ∞c) k = 4/3. Si el trayecto es casi horizontal ,sea próxima acero, como, por otra parte, n se aproxima mucho a 1
11) Si el haz se propaga de forma rectilínea, entonces la constante de tierra ficticia vale: a) k = 0. b) k = 1. c) k = 4/3. d) k = ∞a) k = 0. Si el trayecto es casi horizontal ,sea próxima acero, como, por otra parte, n se aproxima mucho a 1
12) ¿Cuál de las afirmaciones siguientes relativas al fenómeno de difracción en obstáculo de “filo de cuchillo” es cierta? a) Es posible recibir el doble de campo que respecto al caso de espacio libre. b) El coeficiente de reflexión en el extremo del obstáculo es -0,3. c) Las pérdidas que se producen son independientes de la frecuencia. d) Ninguna de las anteriores.d) Ninguna de las anteriores. La difracción es un fenómeno observable en los sistemas físicos en los que intervienen ondas, por el cual las mismas, cuando encuentran un obstáculo, pueden rodearlo parcialmente (por eso podemos oír el sonido a la vuelta de una esquina). Las olas en los lagos o el mar también producen estos efectos
13) Considerando el fenómeno de difracción en un obstáculo de coeficiente de reflexión igual a -1, se tiene que: a) la potencia recibida puede llegar a ser nula aun existiendo visibilidad suficiente; b) las pérdidas cuando existe obstrucción del haz son inferiores que en el caso de otros coeficientes de reflexión; c) la potencia recibida nunca puede ser 6 dB superior que en el caso de espacio libre; d) ninguna de las anteriores.b) las pérdidas cuando existe obstrucción del haz son inferiores que en el caso de otros coeficientes de reflexión; En este caso el ángulo es próximo acero, por lo que el coeficiente de reflexión es prácticamente-1 para las dos polarizaciones
14) En la mitad de un radioenlace de 10 km de longitud existe un obstáculo que puede modelarse como de tipo “filo de cuchillo”. Si el rayo directo transcurre a una distancia de 13 m del mismo, calcule las pérdidas que se producen a la frecuencia de 10 GHzPerdida=0dB
15) Considérese un radioenlace entre dos edificios situados a 1 km de distancia tal y como se muestra en la figura. A 100 m del edificio donde se encuentra situada la antena receptora existe otro edificio de 40 m de altura que puede modelarse con un coeficiente de reflexión de –0,3. El mástil de la antena receptora tiene una altura de 6 m y la frecuencia utilizada es de 2 GHz. a) Calcule la altura que debe tener el mástil de la antena transmisora para que las pérdidas por difracción sean inferiores a 10 dB. b) ¿Cuánto valdrían estas pérdidas si el mástil tuviera una altura de 6 m?ht=15 m L=14 dB